Informatik und Kommunikation
Wie können mit Luftbildaufnahmen 3D Modelle generiert werden?
- Planen von kreisförmigen und einen rasterförmigen Flug Trajektorien.
- Autonomes Abfliegen und Aufnahme der Bilder
- Verortung der Bilder mittels GPS und Structure from Motion Algorithmen.
- Generierung von 3D Modellen mithilfe von Multi-View Stereo Algorithmen.
This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.
9 Panoramen, das erste ist aus größerer Höhe aufgenommen und enthält im Himmel eine Karte mit den Positionen der aufgenommenen Punkte (gelb). Das aktuelle Bild ist im Fadenkreuz (rot). Zusätzlich noch ein paar Details zu dem aktuellen Punkt. Jedes Panorama ist 10 Sekunden lang.
Zum Betrachten die höchste Auflösungsstufe wählen und die Pausetaste verwenden. Mit dem gedrückten linken Button kann man sich im Bild bewegen.
Durch Panoramen in Kombination mit dem ORB-SLAM ist ein schnelles Tracking möglich, liefert jedoch ausschließlich spärliche Daten. Durch die Kombination mit einem neuronalen Netz soll der SLAM Algorithmus zu einem RGBD-SLAM erweitert werden, um ein besseres Tracking und eine dichtere Punktwolke zu gewährleisten.
Challenging visual localization of an UAV while flying out of a room into a snowy environment (~ 4:50). The UAV is equipped with a 360° camera. The localization is done with OpenVSLAM.
The video was recorded in Jan. 2019 at the Fire Brigade training center in Dortmund
To achieve nearly real time conditions the original resolution of 5k (30 fps) was reduced to 2k (ffmpeg -i video.mp4 -vf scale=1920:-1 -crf 25 vido-small.mp4) with high compression (-crf 25). This reduce the original size from 3.2 GB to 93MB (~ 4 MBit/s which could be transmitted online via a radio link). The localization shown did not use frameskip. With a frameskip above 1 the localization fails while the UAV is flying through the window. Indoor localization can be done with a frameskip of 3 in real time.
At the beginning of the pandemic in Feb. 2020 I had a little time and wanted to do something new i.e. bring my 3D printer, AI and computer science together somehow. The result is a printed portrait with a lot of computer science. Using style transfer I transferred the etching style of a Göthe portrait to a young girl I call Carolin. By means of image processing I made a black and white picture out of it. Then, using the problem of the traveling salesman, each black point in the picture is interpreted as a city and the whole picture is drawn by only one line. Since this line is very long, it is optimized and shortened by a so-called simulated annealing algorithm. The result is printed in 5 layers on a 3D printer.
360° UAV Flight in a collapse test setup at the German Resuce Robotik Center
360° Camera at a small UAV
(2021)