Refine
Year of publication
Document Type
- Conference Proceeding (364) (remove)
Keywords
- Bionik (10)
- Akkreditierung (3)
- Gespenstschrecken (3)
- Haftorgan (3)
- Intercultural Collaboration (3)
- Strukturoptimierung (3)
- adhesion (3)
- stick insects (3)
- Collaborative Online International Learning (2)
- Competency-Oriented Exams (2)
Institute
- Institut für Internetsicherheit (73)
- Westfälisches Institut für Gesundheit (63)
- Informatik und Kommunikation (45)
- Westfälisches Energieinstitut (38)
- Maschinenbau Bocholt (32)
- Wirtschaft und Informationstechnik Bocholt (26)
- Elektrotechnik und angewandte Naturwissenschaften (22)
- Wirtschaftsrecht (8)
- Institut für biologische und chemische Informatik (6)
- Institut für Innovationsforschung und -management (5)
Abstract
In this paper, we shed light on shared hosting services’ security and trust implications and measure their attack surfaces. To do so, we analyzed 30 shared hosters and found that all of them might leak relevant information, which could be abused unnoticed. An adversary could use this attack surface to covertly extract data from various third parties registered with a shared hoster. Furthermore, we found that most hosters suffer from vulnerabilities that can be used by an internal attacker (i.e., someone using the service) to compromise other hosted services or the entire system.
Abstract
For years, researchers have been analyzing mobile Android apps to investigate diverse properties such as software engineering practices, business models, security, privacy, or usability, as well as differences between marketplaces. While similar studies on iOS have been limited, recent work has started to analyze and compare Android apps with those for iOS. To obtain the most representative analysis results across platforms, the ideal approach is to compare their characteristics and behavior for the same set of apps, e. g., to study a set of apps for iOS and their respective counterparts for Android. Previous work has only attempted to identify and evaluate such cross-platform apps to a limited degree, mostly comparing sets of apps independently drawn from app stores, manually matching small sets of apps, or relying on brittle matches based on app and developer names. This results in (1) comparing apps whose behavior and properties significantly differ, (2) limited scalability, and (3) the risk of matching only a small fraction of apps.
In this work, we propose a novel approach to create an extensive dataset of cross-platform apps for the iOS and Android ecosystems. We describe an analysis pipeline for discovering, retrieving, and matching apps from the Apple App Store and Google Play Store that we used to create a set of 3,322 cross-platform apps out of 10,000 popular apps for iOS and Android, respectively. We evaluate existing and new approaches for cross-platform app matching against a set of reference pairs that we obtained from Google's data migration service. We identify a combination of seven features from app store metadata and the apps themselves to match iOS and Android apps with high confidence (95.82 %). Compared to previous attempts that identified 14 % of apps as cross-platform, we are able to match 34 % of apps in our dataset. To foster future research in the cross-platform analysis of mobile apps, we make our pipeline available to the community.
Abstract
This paper challenges the conventional assumption in cybersecurity that users act as rational actors. Despite numerous technical solutions, awareness campaigns, and organizational strategies aimed at bolstering cybersecurity, these often overlook the prevalence of non-rational user behavior. Our study, involving a survey of 208 participants, empirically demonstrates this aspect. We found that a significant portion of users (55.3%) would accept a substantial risk (35%) to click on a potentially malicious link or attachment. This propensity increases to 61% when users are led to believe there is a 65% chance of facing no adverse consequences. To address this irrationality, we explored the efficacy of nudging mechanisms within email systems. Our qualitative user study revealed that incorporating a simple colored nudge in the email intably enhance the ability of users to discern malicious emails, improving decision-making accuracy by an average of 10%.
Abstract
Filter lists are used by various users, tools, and researchers to identify tracking technologies on the Web. These lists are created and maintained by dedicated communities. Aside from popular blocking lists (e.g., EasyList), the communities create region-specific blocklists that account for trackers and ads that are only common in these regions. The lists aim to keep the size of a general blocklist minimal while protecting users against region-specific trackers.
In this paper, we perform a large-scale Web measurement study
to understand how different region-specific filter lists (e.g., a blocklist specifically designed for French users) protect users when visiting websites. We define three privacy scenarios to understand when and how users benefit from these regional lists and what effect they have in practice. The results show that although the lists differ significantly, the number of rules they contain is unrelated to the number of blocked requests. We find that the lists’ overall efficacy varies notably. Filter lists also do not meet the expectation that they increase user protection in the regions for which they were designed. Finally, we show that the majority of the rules on the lists were not used in our experiment and that only a fraction of the rules would provide comparable protection for users.
Experiencing relational devaluation at work through social stressors has been linked to various detrimental outcomes. In the current study, we investigate the role of hardiness and mindfulness as personal resources which help employees to effectively cope with such stressors and thereby prevent burnout.
We focus on trait mindfulness as the innate capacity of paying and maintaining attention to present-moment experiences with an open and nonjudgmental attitude. It has been shown to promote concentration and well-being and to facilitate decision making; it is often seen as an important resource for overcoming challenges in everyday work life.
Hardiness also constitutes a personality profile of dispositional resilience that describes how people deal with stressful events and includes the core aspects of challenge (conviction that challenges offer opportunities), engagement (actively tackling tasks and challenges) and a sense of control (conviction of influence over one's own life circumstances). People with high hardiness show better health and higher job satisfaction and performance.
We build our hypothesis according to the extended version of the Job Demands–Resources model, which states that personal resources protect employees from burnout, because they shape employees’ perceptions of and reactions towards their work environment. In a similar vein, stress theory suggests that personal resources mitigate burnout through lower stress appraisals, greater use of adaptive coping, and flexibility in matching coping to appraisals.
We measured social stressors at work with the scale developed by Frese et al and further asked participants to work on the Maslach Burnout Inventory, the Mindful Attention and Awareness Scale and the short version of the Revised Norwegian Dispositional Resilience (Hardiness) Scale. Our cross-sectional study was based on a sample of N = 174 employees from a broad range of organizations and job types.
Statistical Analyses revealed significant negative correlations of both personal resources with reported symptoms of burnout and the perception of social stressors as well. However, in line with prior research, they indeed did not attenuate the relationship between social stressors and emotional exhaustion at work. Theoretical and practical implications as well as limitations and avenues for future research are discussed.
The precision of yield calculation of modern design and simulation software for photovoltaic systems strongly rely, beside the accuracy of the specified module and inverter data, on the quality of the weather data. Since data from weather stations is not available for most locations world-wide this data is calculated by using modern interpolation methods. Beside this, simulation software typically uses historical weather data. In this work the mismatch of yield simulation results based on proprietary data, meaning interpolated or also called synthetical data, and data coming from a weather station in proximity to the installation is evaluated. The simulated data sets are compared to measurement data as obtained by the inverter output and hence give a profound understanding how interpolated data may influence the simulation results. The outcome shows that the quality of the yield simulation, if compared to the measurement data, is increased by a factor of up to four if on-site weather data is used as input for the simulation. The largest source of deviation is irradiation, which varies up to 10% if synthetical and measured irradiation on-site is compared. The second largest sources for simulation mismatches are power calculation and module temperature correction.
When organizing intercultural and interdisciplinary Project-Based Learning (PBL) activities across Higher Education Institutions (HEIs), the organizational and resource implications, along with the associated financial challenges, soon become crucial. Even promising approaches may not take off as a simple ‘return on investment’ view and funding decision may not fully address their various impacts on students, staff, institutions and society.
This paper explores the experiences within a distributed interdisciplinary project-based learning program run from 2020 to 2023 and involving more than 150 students from four continents learning 21st century skills by collaborating over one semester to address real-world problems faced by clients in partner countries. While the primary goal of this distributed interdisciplinary and intercultural project-based learning program was to offer students a truly Global Intercultural Project Experience (GIPE), this paper explores its broader impact. We found that the program significantly influenced both the academic and administrative staff at all partner universities. Furthermore, we examine the program's effect on the participating institutions themselves over the four-year period. Our conclusion is that the invaluable benefits of such interdisciplinary project-based learning extend well beyond financial metrics. They include enhanced student learning experiences, strengthened cooperation and mutual learning between academics and administrative staff, improved institutional reputation, and positive societal impact.
Thus, we worked hard to convince both our university management and the world's largest funding organisation for the international exchange of students and researchers to grant financial support for another 3-year period in 2025 to 2027 during which the GIPE concept will be further developed and a permanent organizational structure shall be established based on an extended network of partner institutions and sponsors around the world.
Unleashing Personalized Education Using Large Language Models in Online Collaborative Settings
(2024)
The Artificial Intelligence community has long pursued personalized education. Over the past decades, efforts have ranged from automated advisors to Intelligent Tutoring Systems, all aimed at tailoring learning experiences to students' individual needs and interests. Unfortunately, many of these endeavors remained largely theoretical or proposed solutions challenging to implement in real-world scenarios. However, we are now in the era of Large Language Models (LLMs) like ChatGPT, Mistral, or Claude, which exhibit promising capabilities with significant potential to impact personalized education. For instance, ChatGPT 4 can assist students in using the Socratic method in their learning process. Despite the immense possibilities these technologies offer, limited significant results are showcasing the impact of LLMs in educational settings. Therefore, this paper aims to present tools and strategies based on LLMs to address personalized education within online collaborative learning settings. To do so, we propose RAGs (Retrieval-Augmented Generation) agents that could be added to online collaborative learning platforms: a) the Oracle agent, capable of answering questions related to topics and materials uploaded to the platform.; b) the Summary agent, which can summarize and present content based on students' profiles.; c) the Socratic agent, guiding students in learning topics through close interaction.; d) the Forum agent, analyzing students' forum posts to identify challenging topics and suggest ways to overcome difficulties or foster peer collaboration.; e) the Assessment agent, presenting personalized challenges based on students' needs. f) the Proactive agent, analyzing student activity and suggesting learning paths as needed. Importantly, each RAG agent can leverage historical student data to personalize the learning experience effectively. To assess the effectiveness of this personalized approach, we plan to evaluate the use of RAGs in online collaborative learning platforms compared to previous online learning courses conducted in previous years.
This paper discusses the experiences of a distributed interdisciplinary project-based learning program for students across continents. For the years 2020 until 2023, we received seed-funding for four annual projects to engage students from Germany (Europe), Namibia (Africa), Indonesia (Asia), and Peru (Latin-America) to collaborate over one semester on interdisciplinary projects contributing to the solution of some real-life client’s problems in the partner countries. During this period, more than 150 students embarked on these projects with 116 of them being selected for a scholarship for an international mobility. With the guidance and support by academics from all partner universities, the students success-fully completed each project expressing deep appreciation for the learning opportunities while over¬coming challenges of working across widespread time zones, different cultures, changing requirements, and various technical difficulties.
While the primary aim of this distributed interdisciplinary and intercultural project-based learning program was to provide students with a truly Global Intercultural Project Experience (GIPE), in this paper we investigate on its impact in a broader sense as it was observed that this program also had a significant impact on both academic and administrative staff at all partner universities. Finally, we also reveal the impact of this four-year-program on the participating institutions themselves and conclude that the invaluable returns of such interdisciplinary project-based learning extend far beyond financial metrics. It encompasses enhanced student learning experiences, strengthened cooperation and mutual learning between academics and administrative staff, as well as institutional reputation, and societal impact.
This Paper explores how emergent technologies such as 6G and tactile Internet can potentially enhance cognitive, personal informatics (CPI) in participatory healthcare, promoting patient-centered healthcare models through high-speed, reliable communication networks. It highlights the transition to improved patient engagement and better health outcomes facilitated by these technologies, underscoring the importance of ultra-reliable, low-latency communications (URLLC) and realizing the tactile Internet’s potential in healthcare. This innovation could dramatically transform telemedicine and mobile health (mHealth) by enabling remote healthcare delivery while providing a better understanding of the inner workings of the patient. While generating many advantages, these developments have disadvantages and risks. Therefore, this study addresses the critical security and privacy concerns related to the digital transformation of healthcare. Our work focuses on the challenges of managing and understanding cognitive data within the CPI and the potential threats from analyzing such data. It proposed a comprehensive analysis of potential vulnerabilities and cyber threats, emphasizing the need for robust security frameworks designed with resilience in mind to protect sensitive cognitive data. We present scenarios for reward and punishment systems and their impacts on users. In conclusion, we outline a vision for the future of secure, resilient, and patient-centric digital healthcare systems that leverage 6G and the tactile Internet to enhance the CPI. We offer policy recommendations and strategic directions for stakeholders to create a secure, empowering environment for patients to manage their cognitive health information.
Die Anwendung des "FullControll GCode Designer" vereinfacht den 3D-Druckprozess, indem er die 3D-Modellierung und den Einsatz eines Slicer-Programms überspringt und stattdessen direkt den G-Code erstellt. Die vorgefertigte Excel-Anwendung ermöglicht es, Objekte durch Angabe der Start- und Zielkoordinaten effizient Linie für Linie mit minimalem Eingabeaufwand zu programmieren, wobei verschiedene Druckparameter angepasst werden können, um unterschiedliche Effekte zu erzielen. In diesem Werk werden die Möglichkeiten und Grenzen des Designers erarbeitet.
Various aqueous citrate electrolyte compositions for the Ni-Mo electrodeposition are explored in order to deposit Ni-Mo alloys with Mo-content ranging from 40 wt% to 65 wt% to find an alloy composition with superior catalytic activity towards the hydrogen evolution reaction (HER). The depositions were performed on copper substrates mounted onto a rotating disc electrode (RDE) and were investigated via scanning electron microscopy (SEM), X-ray fluorescence (XRF) and X-ray diffraction (XRD) methods as well as linear sweep voltammetry (LSV) and impedance spectroscopy. Kinetic parameters were calculated via Tafel analysis. Partial deposition current densities and current efficiencies were determined by correlating XRF measurements with gravimetric results. The variation of the electrolyte composition and deposition parameters enabled the deposition of alloys with Mo-content over the range of 40-65 wt%. An increase in Mo-content in deposited alloys was recorded with an increase in rotation speed of the RDE. Current efficiency of the deposition was in the magnitude of <1%, which is characteristic for the deposition of alloys with high Mo-content. The calculated kinetic parameters were used to determine the Mo-content with the highest catalytic activity for use in the HER.
Thermal Stress at the Surface of Thick Conductive Plates Induced by Sinusoidal Current Pulses
(2016)
Inspired by the super-human performance of deep learning models in playing the game of Go after being presented with virtually unlimited training data, we looked into areas in chemistry where similar situations could be achieved. Encountering large amounts of training data in chemistry is still rare, so we turned to two areas where realistic training data can be fabricated in large quantities, namely a) the recognition of machine-readable structures from images of chemical diagrams and b) the conversion of IUPAC(-like) names into structures and vice versa. In this talk, we outline the challenges, technical implementation and results of this study.
Optical Chemical Structure Recognition (OCSR): Vast amounts of chemical information remain hidden in the primary literature and have yet to be curated into open-access databases. To automate the process of extracting chemical structures from scientific papers, we developed the DECIMER.ai project. This open-source platform provides an integrated solution for identifying, segmenting, and recognising chemical structure depictions in scientific literature. DECIMER.ai comprises three main components: DECIMER-Segmentation, which utilises a Mask-RCNN model to detect and segment images of chemical structure depictions; DECIMER-Image Classifier EfficientNet-based classification model identifies which images contain chemical structures and DECIMER-Image Transformer which acts as an OCSR engine which combines an encoder-decoder model to convert the segmented chemical structure images into machine-readable formats, like the SMILES string.
DECIMER.ai is data-driven, relying solely on the training data to make accurate predictions without hand-coded rules or assumptions. The latest model was trained with 127 million structures and 483 million depictions (4 different per structure) on Google TPU-V4 VMs
Name to Structure Conversion: The conversion of structures to IUPAC(-like) or systematic names has been solved algorithmically or rule-based in satisfying ways. This fact, on the other side, provided us with an opportunity to generate a name-structure training pair at a very large scale to train a proof-of-concept transformer network and evaluate its performance.
In this work, the largest model was trained using almost one billion SMILES strings. The Lexichem software utility from OpenEye was employed to generate the IUPAC names used in the training process. STOUT V2 was trained on Google TPU-V4 VMs. The model's accuracy was validated through one-to-one string matching, BLEU scores, and Tanimoto similarity calculations. To further verify the model's reliability, every IUPAC name generated by STOUT V2 was analysed for accuracy and retranslated using OPSIN, a widely used open-source software for converting IUPAC names to SMILES. This additional validation step confirmed the high fidelity of STOUT V2's translations.
The DECIMER.ai Project
(2024)
Over the past few decades, the number of publications describing chemical structures and their metadata has increased significantly. Chemists have published the majority of this information as bitmap images along with other important information as human-readable text in printed literature and have never been retained and preserved in publicly available databases as machine-readable formats. Manually extracting such data from printed literature is error-prone, time-consuming, and tedious. The recognition and translation of images of chemical structures from printed literature into machine-readable format is known as Optical Chemical Structure Recognition (OCSR). In recent years, deep-learning-based OCSR tools have become increasingly popular. While many of these tools claim to be highly accurate, they are either unavailable to the public or proprietary. Meanwhile, the available open-source tools are significantly time-consuming to set up. Furthermore, none of these offers an end-to-end workflow capable of detecting chemical structures, segmenting them, classifying them, and translating them into machine-readable formats.
To address this issue, we present the DECIMER.ai project, an open-source platform that provides an integrated solution for identifying, segmenting, and recognizing chemical structure depictions within the scientific literature. DECIMER.ai comprises three main components: DECIMER-Segmentation, which utilizes a Mask-RCNN model to detect and segment images of chemical structure depictions; DECIMER-Image Classifier EfficientNet-based classification model identifies which images contain chemical structures and DECIMER-Image Transformer which acts as an OCSR engine which combines an encoder-decoder model to convert the segmented chemical structure images into machine-readable formats, like the SMILES string.
A key strength of DECIMER.ai is that its algorithms are data-driven, relying solely on the training data to make accurate predictions without any hand-coded rules or assumptions. By offering this comprehensive, open-source, and transparent pipeline, DECIMER.ai enables automated extraction and representation of chemical data from unstructured publications, facilitating applications in chemoinformatics and drug discovery.
Aufgrund der Energiewende und den steigenden Anforderungen an die technische Gebäudeausrüstung gewinnt der Betrieb von Wärmepumpen in Gebäuden immer mehr an Bedeutung. Inzwischen existiert eine Vielzahl an Wärmepumpen-Systemen, die unterschiedliche Vor- und Nachteile sowie Einsatzmöglichkeiten aufweisen. Sofern die Installation einer Wärmepumpe für den Wohngebäudesektor in Betracht gezogen wird, muss eruiert werden, welches System sowohl ökologisch als auch ökonomisch für das Bauvorhaben am sinnvollsten ist. Hierfür wurde eine Bewertungstool entwickelt, das den Einsatz der unterschiedlichen Wärmepumpensysteme bewertet und auch Nutzern mit wenig Expertise eine Entscheidungshilfe ermöglicht. Für eine möglichst ganzheitliche Betrachtung können verschiedene Szenarien mit Hilfe des Bewertungstools überprüft werden. Hierzu können Indikatoren wie Standortdaten, Gebäudedaten, Parameter für die Trinkwassererwärmung, die Systemtemperaturen der Heizung und die Betriebsweise der Wärmepumpe im Tool variiert werden. Die Ergebnisse des Bewertungstools zeigen, wie die unterschiedlichen Nutzungsanforderungen sich auf die Jahresarbeitszahl und den Energiebedarf auswirken. Zusätzlich werden Investitions- und Verbrauchskosten für die unterschiedlichen Szenarien abgeschätzt und berechnet. Bei der ökologischen Bewertung wird der Fokus der Betrachtung auf den TEWI-Wert gelegt, um den Einfluss von verschiedener Kältemittel im Lebenszyklus der Wärmepumpe zu berücksichtigen.
An automated pipeline for comprehensive calculation of intermolecular interaction energies based on molecular force-fields using the Tinker molecular modelling package is presented. Starting with non-optimized chemically intuitive monomer structures, the pipeline allows the approximation of global minimum energy monomers and dimers, configuration sampling for various monomer-monomer distances, estimation of coordination numbers by molecular dynamics simulations, and the evaluation of differential pair interaction energies. The latter are used to derive Flory-Huggins parameters and isotropic particle-particle repulsions for Dissipative Particle Dynamics (DPD). The computational results for force fields MM3, MMFF94, OPLSAA and AMOEBA09 are analyzed with Density Functional Theory (DFT) calculations and DPD simulations for a mixture of the non-ionic polyoxyethylene alkyl ether surfactant C10E4 with water to demonstrate the usefulness of the approach.
Einleitung und Fragestellung:
Abusive Supervision wird mit willentlicher Leistungszurückhaltung, verringerter Motivation, erhöhtem Stresserleben, psychosomatischen Beschwerden und Burnout bei Mitarbeitenden assoziiert. Angesichts der hohen Prävalenz destruktiver Führung bleibt bislang die Frage offen, welche
protektiven Ressourcen die genannten Zusammenhänge abpuffern.
Theoretischer Hintergrund:
Abusive Supervision bezieht sich auf das Ausmaß der feindseligen verbalen und nonverbalen Verhaltensweisen einer Führungskraft. Basierend auf dem Anforderungs- Ressourcen- Modell gehen wir davon aus, dass sich personale Ressourcen, die Mitarbeitende in der arbeitsfreien Zeit aufbauen, positiv auf den negativen Effekt zwischen destruktiver Führung und Mitarbeitergesundheit auswirken. Wir fokussieren hier die generalisierte Selbstwirksamkeitserwartung, die sich im Sinne der sozialkognitiven Theorie und zahlreichen empirischen Befunden als gesundheitsrelevante Ressource im
Umgang mit domänenübergreifenden Belastungen herausgestellt hat. Diese sollte durch Bewältigungserfahrung in der arbeitsfreien Zeit gefördert werden. Bewältigungserfahrung in der Freizeit bedeutet die Gelegenheit des Erlebens von Kompetenz und Fachwissen.
Methode:
Die Moderatoranalyse wurde im Rahmen einer Querschnittsbefragung einer anfallenden Stichprobe mit N = 305 Personen getestet. Die Variablen wurden mit der Abusive Supervision Scale (Tepper, 2000), dem REQ (Sonnentag & Fritz, 2007), und der Subskala emotionale Erschöpfung des MBI (Büssing & Perrar, 1992) gemessen.
Ergebnisse:
In dieser Studie zeigen „Mastery Experiences“ einen hypothesenkonformen Puffereffekt, nicht jedoch die anderen Erholungsstrategien, die auch mit getestet wurden. Es zeigt sich also die Tendenz, dass sich Mitarbeitende durch das Erlernen neuer Kompetenzen und den Aufbau von Selbstwirksamkeit vor den gesundheitsschädlichen Auswirkungen destruktiver Führung schützen können. Das
Korrelationsmuster deutet aber vrmtl. auch problematische Aspekte dieser Erholungsstrategie an.
Diskussion:
Limitierend muss erwähnt werden, dass wir die vermutete vermittelnde Variable Selbstwirksamkeit nicht explizit gemessen haben, und dass zukünftige Untersuchungen den Effekt in Form einer mediierten Moderation replizieren müssen.
This paper reveals various approaches undertaken over more than two decades of teaching undergraduate programming classes at different Higher Education Institutions, in order to improve student activation and participation in class and consequently teaching and learning effectiveness.
While new technologies and the ubiquity of smartphones and internet access has brought new tools to the classroom and opened new didactic approaches, lessons learned from this personal long-term study show that neither technology itself nor any single new and often hyped didactic approach ensured sustained improvement of student activation. Rather it needs an integrated yet open approach towards a participative learning space supported but not created by new tools, technology and innovative teaching methods.
This paper presents a pragmatic approach for stepwise introduction of peer assessment elements in undergraduate programming classes, discusses some lessons learned so far and directions for further work. Students are invited to challenge their peers with their own programming exercises to be submitted through Moodle and evaluated by other students according to a predefined rubric and supervised by teaching assistants. Preliminary results show an increased activation and motivation of students leading to a better performance in the final programming exams.
In this work a mathematical approach to calculate solar panel temperature based on measured irradiance, temperature and wind speed is applied. With the calculated module temperature, the electrical solar module characteristics is determined. A program developed in MatLab App Designer allows to import measurement data from a weather station and calculates the module temperature based on the mathematical NOCT and stationary approach with a time step between the measurements of 5 minutes. Three commercially available solar panels with different cell and interconnection technologies are used for the verification of the established models. The results show a strong correlation between the measured and by the stationary model predicted module temperature with a coefficient of determination R2 close to 1 and a root mean square deviation (RMSE) of ≤ 2.5 K for a time period of three months. Based on the predicted temperature, measured irradiance in module plane and specific module information the program models the electrical data as time series in 5-minute steps. Predicted to measured power for a time period of three months shows a linear correlation with an R2 of 0.99 and a mean absolute error (MAE) of 3.5, 2.7 and 4.8 for module ID 1, 2 and 3. The calculated energy (exemplarily for module ID 2) based on the measured, calculated by the NOCT and stationary model for this time period is 118.4 kWh, resp. 116.7 kWh and 117.8 kWh. This is equivalent to an uncertainty of 1.4% for the NOCT and 0.5% for the stationary model.
Advanced Determination of Temperature Coefficients of Photovoltaic Modules by Field Measurements
(2023)
In this work data from outdoor measurements, acquired over the course of up to three years on commercially available solar panels, is used to determine the temperature coefficients and compare these to the information as stated by the producer in the data sheets. A program developed in MatLab App Designer allows to import the electrical and ambient measurement data. Filter algorithms for solar irradiance narrow the irradiance level down to ~1000 W/m2 before linear regression methods are applied to obtain the temperature coefficients. A repeatability investigation proves the accuracy of the determined temperature coefficients which are in good agreement to the supplier specification if the specified values for power are not larger than -0.3%/K. Further optimization is achieved by applying wind filter techniques and days with clear sky condition. With the big (measurement) data on hand it was possible to determine the change of the temperature coefficients for varying irradiance. As stated in literature we see an increase of the temperature coefficient of voltage and a decline for the temperature coefficient of power with increasing irradiance.
Measurement studies are essential for research and industry alike to understand the Web’s inner workings better and help quantify specific phenomena. Performing such studies is demanding due to the dynamic nature and size of the Web. An experiment’s careful design and setup are complex, and many factors might affect the results. However, while several works have independently observed differences in
the outcome of an experiment (e.g., the number of observed trackers) based on the measurement setup, it is unclear what causes such deviations. This work investigates the reasons for these differences by visiting 1.7M webpages with five different measurement setups. Based on this, we build ‘dependency trees’ for each page and cross-compare the nodes in the trees. The results show that the measured trees differ considerably, that the cause of differences can be attributed to specific nodes, and that even identical measurement setups can produce different results.
Cookie notices (or cookie banners) are a popular mechanism for websites to provide (European) Internet users a tool to choose which cookies the site may set. Banner implementations range from merely providing information that a site uses cookies over offering the choice to accepting or denying all cookies to allowing fine-grained control of cookie usage. Users frequently get annoyed by the banner’s pervasiveness as they interrupt “natural” browsing on the Web. As a remedy, different browser extensions have been developed to automate the interaction with cookie banners.
In this work, we perform a large-scale measurement study comparing the effectiveness of extensions for “cookie banner interaction.” We configured the extensions to express different privacy choices (e.g., accepting all cookies, accepting functional cookies, or rejecting all cookies) to understand their capabilities to execute a user’s preferences. The results show statistically significant differences in which cookies are set, how many of them are set, and which types are set—even for extensions that aim to implement the same cookie choice. Extensions for “cookie banner interaction” can effectively reduce the number of set cookies compared to no interaction with the banners. However, all extensions increase the tracking requests significantly except when rejecting all cookies.
Theoretischer Hintergrund: In der psychologischen Führungsforschung zeigt sich ein Shift von traditionellem Management hin zu progressiveren Führungsmodellen, in denen das Gemeinwohl und die nachhaltige Führung von Mitarbeitenden anstelle des Selbstinteresses von Führungskräften treten.
Diese Modelle bewegen sich allerdings weiter im traditionellen Paradigma, dass effektive Führung komplexe Systeme gezielt beeinflussen und auf erwünschte Zielzustände hin ausrichten kann.
Fragestellung: Folgt man dem systemischen Ansatz, so können Führungskräfte das organisationale System nicht beeinflussen, sondern lediglich die Relationen seiner Bestandteile und Rahmenbedingungen für Emergenz schaffen. So lässt es sich beispielsweise aus der Theorie komplexer adaptiver Systeme und dem darauf basierenden Complexity Leadership Ansatz ableiten. Wenngleich viele Wissenschaftler*innen hierin Potential effektiver Führung sehen, mangelt es doch an konzeptionellen und psychometrischen Grundlagen sowie empirischer Evidenz für die Effektivität systemischer Führung.
Methodik: Wir stellen einen Fremdbeschreibungsfragebogen zur Messung systemischer Führung vor (N ges = 8770) sowie die mit diesem Instrument gewonnenen Ergebnisse verschiedener Feldstudien (k = 28) zu Antezedenzien, Auswirkungen und Randbedingungen systemischer Führung. Wir berücksichtigen auch die inkrementelle Varianzaufklärung über transformationale Führung.
Ergebnisse: Das Systemic Leadership Inventory ermöglicht die Einschätzung systemischer Kompetenzen
von Führungskräften.
Diskussion: Zukünftige Forschung sollte sich mit der Entwickelbarkeit systemischer Führung beschäftigen. Limitationen unseres Forschungsprojekts werden diskutiert.
Eine der ersten Informationen, die man von seinem Gegenüber wahrnehmen kann, ist meist das äußere Erscheinungsbild. Wird dies als attraktiv bewertet, wirkt es sich in vielen Lebensbereichen, wie auch im beruflichen Umfeld, vorteilhaft aus (Willis & Todorov, 2006; Marlowe et al., 1996; Langlois et al., 2000; Frieze et al., 1991). Im Rahmen der Bachelor-Thesis wurde der Einfluss physischer Attraktivität in Bezug
auf das Fehlverhalten von Mitarbeitenden in Form einer Vignettenstudie untersucht. Es wurden die folgenden Forschungsfragen formuliert: Werden attraktive Mitarbeitende trotz eines gezeigten Fehlverhaltens als vertrauenswürdiger eingeschätzt als unattraktive Mitarbeitende? Wird eine Bestrafung in Form einer Abmahnung und einer Kündigung bei unattraktiven Mitarbeitenden für angemessener gehalten als bei attraktiven Mitarbeitenden? Es wurde vermutet, dass sich auch hier die physische Attraktivität positiv auswirken kann.
Die postulierten Hypothesen wurden mit einem Stichprobenumfang von N = 679 im Between-Subjects Design eines Online-Experiments untersucht. Insgesamt gab es vier Vignetten, die sich in der Attraktivität einer dargestellten Mitarbeiterin und der Art des kontraproduktiven Arbeitsverhaltens unterschieden. Die Datenanalyse zeigte eine signifikante Interaktion zwischen der physischen Attraktivität und der Art des kontraproduktiven Arbeitsverhaltens auf, F(1,675) = 4.02, p = .046, η² = .01. Im Falle eines interpersonal schädigenden Arbeitsverhaltens wurde eine Kündigung bei der attraktiven Mitarbeiterin als angemessener bewertet. Im Falle eines organisationalschädigenden Arbeitsverhaltens hingegen wurde eine Kündigung bei der unattraktiven Mitarbeiterin als angemessener bewertet. Aus diesen Forschungsergebnissen wurden praktische Implikationen, wie zum Beispiel die Sensibilisierung für derartige Einflüsse durch Schulungen, abgeleitet. Auch Ansätze für zukünftige Forschungen, wie die Variation im Geschlecht der Stimulusperson, wurden vorgeschlagen.
Der sozioanalytischen Theorie folgend argumentieren wir, dass Machiavellismus nur im Falle einer hohen emotionalen Einflusskompetenz zuträglich für den objektiven Karriereerfolg ist.
In den Daten unserer fragebogenbasierten Querschnittsstudie zum jährlichen Bruttoeinkommen mit N = 149 Mitarbeitenden aus der Privatwirtschaft zeigen sich unter Kontrolle von Alter, Geschlecht und Führungsspanne weder signifikante Haupteffekte für Machiavellismus, noch für emotionale Intelligenz, dafür aber ein hypothesenkonformer Interaktionseffekt.
Unter Berücksichtigung methodischer Limitationen, die vorrangig an die Messung der beiden die Studie konstituierenden Konstrukte geknüpft sind, werden wissenschaftliche und praktische Implikationen dieses Befunds diskutiert.
Ethische Führung, Arbeitsplatzunsicherheit und soziale Dominanzorientierung: Eine Vignettenstudie
(2019)
Moderating Role of Self-control Strength with Transformational Leadership and Adaptive Performance
(2013)
Based on a longitudinal sample of employees from the U.S. financial services industry (N=121), the present research examined the impact of transformational leadership on followers’ adaptive performance in change processes. Follower personality was taken into account as boundary condition by testing, if follower self-control strength as an individual trait moderated the relationship between transformational leadership and adaptive performance. In line with the developed hypothesis, results from a latent moderated structural equation model showed that followers’ self-control strength attenuated the relationship between transformational leadership and adaptive performance. Implications for research and practice are discussed.
Einleitung und Fragestellung
Zahlreiche empirische Befunden sprechen für die positiven Effekte authentischer Führung. Wir untersuchen ihre Antezedenzien.
Theoretischer Hintergrund
Authentische Führung meint Handeln im Einklang mit moralischen Werten. Aus sozialkognitiver Perspektive bezeichnet moralische Identität eine komplexe Wissensstruktur aus moralischen Werten, Zielen und Verhaltensmustern, welche durch Lebenserfahrungen erworben werden. Darin sehen wir eine Basis für authentische
Führung (H1). Sich trotz sozialer Opposition für moralische Prinzipien einzusetzen, ist bezeichnend für Mut. Dieser zeigt sich in selbstkongruentem Verhalten trotz negativer
Konsequenzen. Dem Identitätsprozessmodell folgend, wird Mut notwendig, wenn Identiätsspannungen Inkongruenz zwischen Selbstkonzept und sozialer Identität hervorrufen. Darin sehen wir ein Aktivierungspotenzial für authentische Führung (H2).
Methode
Wir befragten N = 70 Führungsdyaden eines Industriekonzerns. Mut (WSCS; Howard et al., 2016) und moralische Identität(MIS; Aquino & Reed, 2002) wurden als Selbsteinschätzung der Führungskräfte erhoben (Altersdurchschnitt: 46 Jahre, 59% ♂). Authentische Führung (ALQ, Walumbwa et al., 2008) erfassten wir als Fremdeinschätzung durch Mitarbeitende (Altersdurchschnitt: 37, 47% ♂).
Ergebnisse
Moralische Identität und tatsächliches Verhalten müssen scheinbar nicht notwendigerweise übereinstimmen; etwa wenn hohe Kosten für moralisches Verhalten erwartbar sind. Hier setzt sozialer Mut im Arbeitskontext an. Entsprechend
wird eine mutig agierende Führungskraft als authentisch wahrgenommen, vor allem, wenn dieses Verhalten mögliche negative soziale Konsequenzen beinhaltet.
Diskussion
Mutiges Handeln wird durch Persönlichkeit, Selbstwirksamkeit und aktuelle Emotionen geleitet und kann etwa in der Führungskräfteentwicklung gelernt werden.
Hier bieten sich narrative Formate an, die die Selbstreflexion fördern. Auch bzgl. der Entwicklung authentischer Führung verweisen erste Befunde auf die Bedeutung der persönlichen Reflexion, z.B. über die eigene Lebensgeschichte.
Theoretischer Hintergrund: Mut ist ein bislang wenig erforschtes Konstrukt. In der Forschung existieren unterschiedliche Betrachtungsweisen und Annahmen, u.a. hinsichtlich der Art des Konstruktes oder der Einflussfaktoren. Es existieren zudem, insbesondere im deutschsprachigen Raum, nur wenige Instrumente zur Messung von Mut. Diese zeigen zudem oftmals verbesserungsfähige oder unzureichende psychometrische Gütekriterien.
Fragestellung: Auf Basis einer umfangreichen Literaturrecherche ist unser Ziel, neben einem wissenschaftlichen Beitrag zur Klärung des Konstruktes, einen Selbstbeschreibungsfragebogen zur Messung von Mut im Arbeitskontext zu konstruieren, welcher den gängigen psychometrischen Gütekriterien entspricht und perspektivisch im Rahmen der Personalauswahl und Personalentwicklung eingesetzt werden könnte.
Methodik: Der Erstentwurf des Selbstbeschreibungsfragebogens zu Mut im Arbeitskontext besteht aus den Dimensionen sozialer Mut und persönlicher Mut. Zur psychometrischen Überprüfung des Fragebogenentwurfs haben wir eine Querschnittstudie in Form einer Online-Befragung durchgeführt (N = 253). Der Fokus lag auf der Itemanalyse, sowie auf der Überprüfung der Reliabilität und der Validität.
Ergebnisse: Die Reliabilität beträgt α = .92 und α = .91. Die exploratorische Faktorenanalyse stützt das 2-Faktoren-Modell. Es existieren erwartungsgemäß signifikante positive Korrelationen mit inhaltsähnlichen Konstrukten, u.a. arbeitsplatzbezogene Selbstwirksamkeit oder Extraversion und negative signifikante Korrelationen zu Neurotizismus und Psychopathie. Zusätzlich zeigen Mittelwertsvergleiche für
Geschlecht und Führungsverantwortung Ergebnisse gemäß dem aktuellen Stand der Forschung.
Diskussion Der Selbstbeschreibungsfragebogen zeigt klares Potenzial für die Nutzung im Rahmen der Personalauswahl und Personalentwicklung. Im Rahmen der Fragebogenkonstruktion ist es entscheidend das Konstrukt so eng wie möglich einzugrenzen. Die Fokussierung auf eine spezifische Form von
Mut scheint der Schlüssel zu sein, um ein den gängigen Anforderungen an psychometrische Gütekriterien entsprechendes Instrument zu entwickeln.
Psychological Capital as Mediator between Transformational Leadership and Adaptive Performance
(2013)
Desert ants Cataglyphis spec. monitor inclination and distance covered through force-based sensing in their legs. To transfer this mechanism to legged robots, artificial neural networks are used to determine the inclination angle of an experimental ramp from the motor data of the legs of a commercial hexapod walking robot. It is possible to determine the inclination angle of the ramp based on the motor data of the robot legs read out during a run. The result is independent of the weight and orientation of the robot on the ramp and hence robust enough to serve as an independent odometer.
In the realm of digital situational awareness during disaster situations, accurate digital representations,
like 3D models, play an indispensable role. To ensure the
safety of rescue teams, robotic platforms are often deployed
to generate these models. In this paper, we introduce an
innovative approach that synergizes the capabilities of compact Unmaned Arial Vehicles (UAVs), smaller than 30 cm, equipped with 360° cameras and the advances of Neural Radiance Fields (NeRFs). A NeRF, a specialized neural network, can deduce a 3D representation of any scene using 2D images and then synthesize it from various angles upon request. This method is especially tailored for urban environments which have experienced significant destruction, where the structural integrity of buildings is compromised to the point of barring entry—commonly observed post-earthquakes and after severe fires. We have tested our approach through recent post-fire scenario, underlining the efficacy of NeRFs even in challenging outdoor environments characterized by water, snow, varying light conditions, and reflective surfaces.
In this paper, we present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs) usually during vegetation fires. To achieve this, we use artificial neural networks and create a dataset for supervised learning. We accomplish the assisted labeling of the dataset through the implementation of an object detection pipeline that combines classic image processing techniques with pretrained neural networks. In addition, we develop a data augmentation pipeline to augment the dataset with utomatically labeled images. Finally, we evaluate the performance of different neural networks.
Dem Thema Nachhaltigkeit kommt zunehmend eine größere Bedeutung zu. Dies liegt nicht zuletzt daran, dass die Pflicht, einen Nachhaltigkeitsbericht zu erstellen, mit dem Jahr 2024 auch auf viele kleine und mittlere Unternehmen ausgeweitet wird. Bislang trifft dies überwiegend auf große Unternehmen zu, welche in der Regel strukturell und hinsichtlich Software sehr gut für die Bewältigung dieser Aufgabe aufgestellt sind. Anders verhält es sich jedoch bei KMU, denn in diesen fehlen meist personelle und finanzielle Ressourcen sowie geeignete softwaretechnische Unterstützungswerkzeuge. In diesem Beitrag werden die Ergebnisse einer Studie der Westfälischen Hochschule vorgestellt, die sich auf das Nachhaltigkeitsreporting von KMU fokussiert. Darüber hinaus werden Herausforderungen aus Informationssicht erläutert und mögliche Unterstützungsbedarfe für KMU diskutiert. Ein Überblick über zukünftige Ansatzpunkte und eine abschließende Diskussion runden den Artikel ab.
Mikrostrukturen auf Oberflächen bestimmen häufig deren physikalische Eigenschaften. Die üblichen Methoden zur Herstellung von mikrostrukturierten Oberflächen wie Fotolithografie sind aber teuer und aufwändig. Daher wird schon lange die schnelle und günstige Methode der Abformung genutzt, um Gegenstände mit Mikrostrukturen herzustellen
[1,2]. Zur Nutzung als Positiv für die Abformung können Oberflächen zum Beispiel mit Fotolithografie hergestellt werden, oder es können mikrostrukturierte Objekte aus der Natur verwenden werden. Mittels Fotolithografie können aber keine gewölbten Oberflächen mit Mikrostrukturen versehen werden und mikrostrukturierte Oberflächen aus der Natur sind meist eher klein. In dieser Arbeit wurde daher nach sehr kleinen mikrostrukturierten Objekten gesucht, die nebeneinander auf eine (auch gewölbte) Oberfläche aufgebracht werden können, um diese anschließend abzuformen. Die besten Resultate ergaben mit Bärlappsporen beschichtete Oberflächen als Positive. Replikate dieser Oberflächen zeigen einen um 30° höheren Kontaktwinkel als das unstrukturierte Material.
Purpose
So far, there are several approaches of measuring the Dark Triad traits, but still all of them are
personality questionnaires with at least questionable usability for applied contexts such as Human
Resource Management.
The purpose of the study is the development of a structured interview with the aim of measuring the Dark Triad in a rather qualitative way that increases social validity for the respondents.
Design/Methodology/Approach/Intervention
In the present study, 15 executives from the telecommunications industry were interviewed on their personal evaluation of management success and derailment. Afterwards, their personality traits of the Dark Triad were measured with the help of the Short Dark Triad Scale. Subsequently, the data from qualitative and quantitative research were examined for correlations using the mixed-method approach.
Results
The results of the mixed-method approach showed a statistically significant correlation between the Short Dark Triad Scale and the ratings for narcissism, Machiavellianism and subclinical psychopathy in the Dark Triad interview.
Limitations
Replicating the results in a bigger sample and a deeper investigation of the criterion-related validity as well as an integration of multiple raters can provide more confidence in our results.
Research/Practical Implications
Structured interviews allow the measurement of personality traits in a more convenient way especially in personnel selection and development processes. Identifying subclinical traits in leadership candidates can, e.g. prevent management derailment.
Originality/Value
The present study advances the measurement methods of the Dark Triad.
Purpose
Although the systemic approach to the leadership concept seems to fit well into our modern complex and dynamic work environment, only little research has been conducted to define and assess systemic leadership. In this study we therefore developed and assessed criterion validity of the
multidimensional systemic leadership inventory (SLI, Sülzenbrück & Externbrink, 2017).
Methodology
We conducted two cross-sectional survey among managers and employees of various organizations (N = 143 and N = 150).
Results
We found a robust five-factor structure of the SLI, comprising systemic thinking, self-knowledge, solution-oriented communication, creating meaning and delegation. Regarding criterion validity, a significant positive correlation of systemic leadership was found with affective commitment, while a significant negative correlation with emotional strain in occupational contexts occurred. These overall positive outcomes for employees were not undermined by negative personality traits of the employee (Machiavellianism), while strong growth need strength further enhanced positive effects on affective commitment.
Limitations
Since all variables were measured as self-reports, common method variance could limit our findings.
Practical Implications
Systemic leadership is a very promising new approach for leaders to ensure committed and less strained employees.
Value
Systemic leadership, especially in terms of a leaders’ understanding of organizational and private systems influencing work behaviour of all members of an organization, is a promising novel leadership model suitable to address challenges of complex and dynamic work environments.